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Abstract In this paper, we are concerned with the multiobjective programming problem
with inequality constraints. We introduce new classes of generalized α-univex type I vec-
tor valued functions. A number of Kuhn–Tucker type sufficient optimality conditions are
obtained for a feasible solution to be an efficient solution. The Mond–Weir type duality
results are also presented.
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1 Introduction

Multiobjective optimization is known as an useful mathematical model to investigate some
real-world problems with conflicting objectives, arising from economics, human decision-
making, optimization and control, engineering, transportation and many others. For more
applications and historical reference, see [3,17].

The concept of convexity and its various generalizations is important for quantitative and
qualitative studies in operations research or applied mathematics. But for many mathemati-
cal models used in decision sciences, economics, management sciences, stochastics, applied
mathematics and engineering, the notion of convexity does not no longer suffice. In recent
years, there has been an increasing interest in generalization of convexity in connection with
sufficiency and duality in optimization problems. It has been found that only a few properties
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of convex functions are needed for establishing sufficiency and duality theorems. Using the
properties needed as definitions of new classes of functions, it is possible to generalize the
notion of convexity and to extend the validity of theorems to larger classes of optimization
problems. Consequently, several classes of generalized convex functions are introduced in
the literature.

Parallel to the above development in multiple-objective optimization, there has been a
very popular growth and application on invexity theory which was originated by Hanson
[6] but so named by Craven [4]. Later Hanson and Mond [7] introduced type I and type II
invexities which have been further generalized to pseudo type I, and quasi type I functions
by Reuda and Hanson [18] and pseudoquasi type I, quasi pseudo type I and strictly pseudo
quasi type I functions by Kaul et al. [10]. Reuda et al. [19] obtained optimality and duality
results for several mathematical programs by combining the concepts of type I functions and
univex functions [2]. Mishra [12] obtained optimality, duality and saddle point results for a
multiple-objective programs by combining the concepts of pseudoquasi type I, quasi-pseudo
type I, strictly pseudoquasi type I and univex functions.

Recently, Aghezzaf and Hachimi [1] introduced generalized type I vector valued func-
tions and established duality theorems for Mond–Weir and general Mond–Weir type duality.
Mishra et. al. [13] introduced generalized univex type I vector valued functions by extend-
ing the definition of generalized type I vector-valued functions introduced by Aghezzaf and
Hachimi [1] and established Kuhn–Tucker type sufficient optimality conditions and duality
theorems for Mond–Weir and general Mond–Weir type duality.

It is known that, despite substituting invexity for convexity, many theoretical problems
in differentiable programming can also be solved; see Hanson [6], Edugo and Hanson [5],
and Jeyakumar and Mond [9]. Noor [16] introduced some classes of α-invex functions by
relaxing the definition of an invex function and studied some properties of the α-preinvex
functions and their differentials. Mishra et al. [14] introduced the concept of the strict pseudo
α-invex and quasi α-invex functions. Recently, Jayswal [8] discussed the sufficient opti-
mality conditions for a class of nondifferentiable minimax fractional programming problem
and established weak and strong duality theorems for two types of dual problems under
generalized α-univexity.

In this paper, we consider a nonlinear multiobjective programming problem with inequal-
ity constraints and introduce new classes of generalized α-univex type I function. In Sect. 2,
we introduce some preliminaries. Some sufficient optimality results are established in Sect. 3.
A number of duality theorems in the Mond–Weir setting [15] are shown in Sect. 4.

2 Preliminaries

The following convention for inequalities will be used throughout the paper. If x = (x1, x2,

. . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn, we denote

x ≤ y ⇔ xi ≤ yi ∀i = 1, 2, . . . , n and x �= y;
x � y ⇔ xi ≤ yi ∀i = 1, 2, . . . , n;
x < y ⇔ xi < yi ∀i = 1, 2, . . . , n.

Consider the following multiobjective optimization problem:

(P) min f (x)

subject to g(x) � 0, x ∈ X,

where f : X → R p, g : X → Rm, X is a non empty open subset of Rn .
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Let D = {x ∈ X : g(x) � 0} be the set of all feasible solution for (P) and denote
I = {1, 2, . . . , p}, M = {1, 2, . . . , m}, J (x) = { j ∈ M : g j (x) = 0} and J̃ (x) = { j ∈
M : g j (x) < 0}. It is obvious that J (x) ∪ J̃ (x) = M .

Let X be a nonempty subset of Rn , η : X × X → Rn is an n-dimensional vector valued
function and α(x, u) : X × X → R+\{0} be a bifunction. First, we recall the following
definitions.

Definition 2.1 (Noor [16])A subset X is said to beα-invex set, if there existη : X×X → Rn ,
α(x, u) : X × X → R+ such that

u + λα(x, u)η(x, u) ∈ X ∀x, u ∈ X, λ ∈ [0, 1].
Note that α-invex set need not be a convex set, see Noor [16].

From now onward we assume that the set X is a nonempty α-invex set with respect to
α(., .) and η(., .) unless otherwise specified.

Definition 2.2 (Noor [16]) The function f on the α-invex set is said to be α-preinvex func-
tion, if there exist η : X × X → Rn , α(x, u) : X × X → R+ such that

f (u + λα(x, u)η(x, u)) ≤ (1 − λ) f (u) + λ f (x) ∀x, u ∈ X, λ ∈ [0, 1].
Definition 2.3 (Noor [16]) The function f is said to be α-invex at u ∈ X with respect to α

and η, if there exist functions α and η such that, for every x ∈ X , we have

f (x) − f (u) ≥ 〈α(x, u)∇ f (u), η(x, u)〉.
In the following definitions, b0, b1 : X×X×[0, 1] → R+, b(x, a) = lim

λ→0
b(x, a, λ) ≥ 0,

and b does not depend on λ if the corresponding functions are differentiable, φ0, φ1 : R → R
and η : X × X → Rn is a vector valued function.

Definition 2.4 ( f, g) is said to be weak strictly pseudoquasi-α-type I univex at u ∈ X if
there exist b0, b1, φ0, φ1, αand η such that

b0(x, u)φ0[ f (x) − f (u)] ≤ 0 ⇒ 〈α(x, u)∇ f (u), η(x, u)〉 < 0,

−b1(x, u)φ1[g(u)] � 0 ⇒ 〈α(x, u)∇g(u), η(x, u)〉 � 0.

Example 2.1 f (x) = (x1esin x2 , x2(x2 − 1)ecos x1), g(x) = (2x1 + x2 − 2) are weak strictly
pseudoquasi α-type I univex at u = (0, 0) with respect to b0(x, u) = b1(x, u) = 1, α(x, u) =
1, η(x, u) = (x1 + x2 − 1, x2 − x1) and φ0, φ1 are identity function on R.

Definition 2.5 ( f, g) is said to be strong pseudoquasi-α-type I univex at u ∈ X if there exist
b0, b1,φ0, φ1, α and η such that

b0(x, u)φ0[ f (x) − f (u)] ≤ 0 ⇒ 〈α(x, u)∇ f (u), η(x, u)〉 ≤ 0,

−b1(x, u)φ1[g(u)] � 0 ⇒ 〈α(x, u)∇g(u), η(x, u)〉 � 0.

Example 2.2 f (x) = (x1(x1 − 1)2, x2(x2 − 1)2(x2
2 + 2)), g(x) = (x2

1 + x2
2 − 9) are strong

pseudoquasi α-type I univex at u = (0, 0) with respect to b0(x, u) = b1(x, u) = 1 α(x, u) =
1, η(x, u) = (x1 − 1, x2 − 1) and φ0, φ1 are identity function on R, but ( f, g) is not weak
strictly pseudoquasi α-type I univex with respect to same b0, b1, α and η as can be seen by
taking x = (1,−1).
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Definition 2.6 ( f, g) is said to be weak quasi strictly pseudo-α-type I univex at u ∈ X if
there exist b0, b1, φ0, φ1, α and η such that

b0(x, u)φ0[ f (x) − f (u)] ≤ 0 ⇒ 〈α(x, u)∇ f (u), η(x, u)〉 � 0,

−b1(x, u)φ1[g(u)] � 0 ⇒ 〈α(x, u)∇g(u), η(x, u)〉 ≤ 0.

Example 2.3 f (x) = (
x3

1

(
x2

1 + 1
)
, x2

2 (x2 − 1)3
)
, g(x) =

(
(2x1 − 4)e−x2

2 , (x1 + x2 − 2)

(x2
1 + 2x1 + 4)

)
are weak quasi strictly pseudo-α-type I univex at u = (0, 0) with respect

to b0(x, u) = b1(x, u) = 1, α(x, u) = 1, η(x, u) = (x1, x2(1 − x2)) and φ0, φ1 are identity
function on R.

Definition 2.7 ( f, g) is said to be weak strictly pseudo-α-type I univex at u ∈ X if there
exist b0, b1, φ0, φ1, α and η such that

b0(x, u)φ0[ f (x) − f (u)] ≤ 0 ⇒ 〈α(x, u)∇ f (u), η(x, u)〉 < 0,

−b1(x, u)φ1[g(u)] � 0 ⇒ 〈α(x, u)∇g(u), η(x, u)〉 < 0.

Definition 2.8 A point x̄ ∈ D is said to be an efficient solution for (P) if there exist no x ∈ D
such that f (x) ≤ f (x̄).

3 Sufficient optimality condition

In this section, we establish some sufficient optimality conditions under various generalized
α-type I univex functions defined in the previous section.

Theorem 3.1 (Sufficiency). Suppose that

(i) x̄ ∈ D;
(ii) there exist ū ∈ R p, ū > 0, v̄ ∈ Rmand v̄ � 0 such that

(a) ū∇ f (x̄) + v̄∇g(x̄) = 0,

(b) v̄g(x̄) = 0,
(c) ūe = 1, where e = (1, 1, . . . , 1)T ∈ R p;

(iii) ( f, v̄g) is strong pseudoquasi α-type I univex at x̄ ∈ D with respect to b0, b1, φ0, φ1, α

and η.

Further assume that a ≤ 0 ⇒ φ0(a) ≤ 0 and a � 0 ⇒ φ1(a) � 0.
Then x̄ is an efficient solution for (P).

Proof Suppose contrary to the result that x̄ is not an efficient solution to (P). Then there
exists a feasible solution x to (P) such that

fi (x) ≤ fi (x̄) for any i ∈ {1, 2, . . . , p}.
Since b0 ≥ 0 and a ≤ 0 ⇒ φ0(a) ≤ 0, from the above inequality, we have

b0(x, x̄)φ0[ fi (x) − fi (x̄)] ≤ 0 for any i ∈ {1, 2, . . . , p}. (1)

By the feasibility of x̄ , we have

−v̄g(x̄) � 0.
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Since b1 � 0 and a � 0 ⇒ φ1(a) � 0, from the above inequality, we have

− b1(x, x̄)φ1[v̄g(x̄)] � 0. (2)

From (1), (2) and condition (iii), we have

〈α(x, x̄)∇ f (x̄), η(x, x̄)〉 ≤ 0,

and

〈α(x, x̄)v̄∇g(x̄), η(x, x̄)〉 � 0.

Since ū > 0, the above inequalities give

〈α(x, x̄)(ū∇ f (x̄) + v̄∇g(x̄)), η(x, x̄)〉 < 0.

Since α(x, x̄) > 0, from the above inequality, we have

〈ū∇ f (x̄) + v̄∇g(x̄), η(x, x̄)〉 < 0,

which contradicts (a) because 〈0, x〉 = 0. This completes the proof. 
�
Theorem 3.2 (Sufficiency). Suppose that

(i) x̄ ∈ D;
(ii) there exist ū ∈ R p, ū ≥ 0, v̄ ∈ Rm and v̄ ≥ 0 such that

(a) ū∇ f (x̄) + v̄∇g(x̄) = 0,

(b) v̄g(x̄) = 0,
(c) ūe = 1, where e = (1, 1, . . . , 1) ∈ R p;

(iii) ( f, v̄g) is weak strictly pseudoquasi α-type I univex at x̄ ∈ D with respect to b0, b1, φ0,

φ1, α and η.

Further assume that a ≤ 0 ⇒ φ0(a) ≤ 0 and a � 0 ⇒ φ1(a) � 0. Then x̄ is an efficient
solution for (P).

Proof Suppose contrary to the result that x̄ is not an efficient solution to (P). Then there
exists a feasible solution x to (P) such that

fi (x) ≤ fi (x̄) for any i ∈ {1, 2, . . . , p}.
Since b0 ≥ 0 and a ≤ 0 ⇒ φ0(a) ≤ 0, from the above inequality, we have

b0(x, x̄)φ0[ fi (x) − fi (x̄)] ≤ 0 for any i ∈ {1, 2, . . . , p}. (3)

By the feasibility of x̄ , we have

−v̄g(x̄) � 0.

Since b1 � 0 and a � 0 ⇒ φ1(a) � 0, from the above inequality, we have

− b1(x, x̄)φ1[v̄g(x̄)] � 0. (4)

From (3), (4) and condition (iii), we have

〈α(x, x̄)∇ f (x̄), η(x, x̄)〉 < 0,

and

〈α(x, x̄)v̄∇g(x̄), η(x, x̄)〉 � 0.
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Since ū ≥ 0, the above inequalities give

〈α(x, x̄)(ū∇ f (x̄) + v̄∇g(x̄)), η(x, x̄)〉 < 0.

Since α(x, x̄) > 0, from the above inequality, we have

〈ū∇ f (x̄) + v̄∇g(x̄), η(x, x̄)〉 < 0,

which contradicts (a) because 〈0, x〉 = 0. This completes the proof. 
�
Theorem 3.3 (Sufficiency). Suppose that

(i) x̄ ∈ D;
(ii) there exist ū ∈ R p, ū � 0, v̄ ∈ Rm and v̄ � 0 such that

(a) ū∇ f (x̄) + v̄∇g(x̄) = 0,

(b) v̄g(x̄) = 0,
(c) ūe = 1, where e = (1, 1, . . . , 1) ∈ R p;

(iii) ( f, v̄g) is weak strictly pseudo α-type I univex at x̄ ∈ D with respect to b0, b1, φ0, φ1, α

and η.

Further assume that a ≤ 0 ⇒ φ0(a) ≤ 0 and a ≤ 0 ⇒ φ1(a) � 0.
Then x̄ is an efficient solution for (P).

Proof Suppose contrary to the result that x̄ is not an efficient solution to (P). Then there
exists a feasible solution x to (P) such that

fi (x) ≤ fi (x̄) for any i ∈ {1, 2, . . . , p}.
Since b0 ≥ 0 and a ≤ 0 ⇒ φ0(a) ≤ 0, from the above inequality, we have

b0(x, x̄)φ0[ fi (x) − fi (x̄)] ≤ 0 for any i ∈ {1, 2, . . . , p}. (5)

By the feasibility of x̄ , we have

−v̄g(x̄) � 0.

Since b1 � 0 and a � 0 ⇒ φ1(a) � 0, from the above inequality, we have

− b1(x, x̄)φ1[v̄g(x̄)] � 0. (6)

From (5), (6) and condition (iii), we have

〈α(x, x̄)∇ f (x̄), η(x, x̄)〉 < 0,

and

〈α(x, x̄)v̄∇g(x̄), η(x, x̄)〉 < 0.

Since ū � 0, the above inequalities give

〈α(x, x̄)(ū∇ f (x̄) + v̄∇g(x̄)), η(x, x̄)〉 < 0.

Since α(x, x̄) > 0, from the above inequality, we have

〈ū∇ f (x̄) + v̄∇g(x̄), η(x, x̄)〉 < 0,

which contradicts (a) because 〈0, x〉 = 0. This completes the proof. 
�
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4 Mond–Weir duality

Now, in relation to (P) we consider the following dual problem, which is in the format of
Mond–Weir [15]:

(MWD) maximize f (y)

subject to u∇ f (y) + v∇g(y) = 0,

(7)

vg(y) ≥ 0, (8)

v ≥ 0, u ≥ 0 and ue = 1, (9)

where e = (1, 1, . . . , 1)T ∈ R p .
Let W = {(y, u, v) : u∇ f (y) + v∇g(y) = 0, vg(y) � 0, u ∈ R p, v ∈ Rm, v � 0}

denote the set of all feasible solutions of (MWD).

Theorem 4.1 (Weak duality). Suppose that

(i) x ∈ D;
(ii) (y, u, v) ∈ W and u > 0;

(iii) ( f, vg) is strong pseudoquasi α-type I invex at y with respect to b0, b1φ0, φ1, α and η.

Further assume that a ≤ 0 ⇒ φ0(a) ≤ 0 and a � 0 ⇒ φ1(a) � 0.
Then the following can not hold:

f (x) ≤ f (y).

Proof Suppose contrary to the result, i.e.,

fi (x) ≤ fi (y) for all i = {1, 2, . . . , p}.
Since b0 ≥ 0 and a ≤ 0 ⇒ φ0(a) ≤ 0, from the above inequality, we have

b0(x, y)φ0[ fi (x) − fi (y)] ≤ 0 for all i = {1, 2, . . . , p}. (10)

By the feasibility of (y, u, v), we have

−vg(y) � 0.

Since b1 � 0 and a ≤ 0 ⇒ φ1(a) � 0, from the above inequality, we have

− b1(x, y)φ1[vg(y)] � 0. (11)

From (10), (11) and condition (iii), we have

〈α(x, y)∇ f (y), η(x, y)〉 ≤ 0,

and

〈α(x, y)v∇g(y), η(x, y)〉 � 0.

Since u > 0, the above inequalities give

〈α(x, y)(u∇ f (y) + v∇g(y)), η(x, y)〉 < 0.

Since α(x, y) > 0, from the above inequality, we have

〈u∇ f (y) + v∇g(y), η(x, y)〉 < 0,

which contradicts (7) because 〈0, x〉 = 0. This completes the proof. 
�
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Theorem 4.2 (Weak duality). Suppose that

(i) x ∈ D;
(ii) (y, u, v) ∈ W and u ≥ 0;

(iii) ( f, vg) is weak strictly pseudoquasi α-type I univex at y with respect to b0, b1, φ0, φ1, α

and η.

Further assume that a ≤ 0 ⇒ φ0(a) ≤ 0 and a � 0 ⇒ φ1(a) � 0.
Then the following can not hold:

f (x) ≤ f (y).

Proof Suppose contrary to the result, i.e.,

fi (x) ≤ fi (y) for all i = {1, 2, . . . , p}.
Since b0 ≥ 0 and a ≤ 0 ⇒ φ0(a) ≤ 0, from the above inequality, we have

b0(x, y)φ0[ fi (x) − fi (y)] ≤ 0 for all i = {1, 2, . . . , p}. (12)

By the feasibility of (y, u, v), we have

−vg(y) � 0.

Since b1 � 0 and a � 0 ⇒ φ1(a) � 0, from the above inequality, we have

− b1(x, y)φ1[vg(y)] � 0. (13)

From (12), (13) and condition (iii), we have

〈α(x, y)∇ f (y), η(x, y)〉 < 0,

and

〈α(x, y)v∇g(y), η(x, y)〉 � 0.

Since u ≥ 0, the above inequalities give

〈α(x, y)(u∇ f (y) + v∇g(y)), η(x, y)〉 < 0.

Since α(x, y) > 0, from the above inequality, we have

〈u∇ f (y) + v∇g(y), η(x, y)〉 < 0,

which contradicts (7) because 〈0, x〉 = 0.This completes the proof. 
�
Theorem 4.3 (Weak duality). Suppose that

(i) x ∈ D;
(ii) (y, u, v) ∈ W ;

(iii) ( f, vg) is weak strictly pseudo α-type I univex at y with respect to b0, b1, φ0, φ1, α and
η.

Further assume that a ≤ 0 ⇒ φ0(a) ≤ 0 and a � 0 ⇒ φ1(a) � 0.
Then the following can not hold:

f (x) ≤ f (y).
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Proof Suppose contrary to the result, i.e.,

fi (x) ≤ fi (y) for all i = {1, 2, . . . , p}.
Since b0 ≥ 0 and a ≤ 0 ⇒ φ0(a) ≤ 0, from the above inequality, we have

b0(x, y)φ0[ fi (x) − fi (y)] ≤ 0 for all i = {1, 2, . . . , p}. (14)

By the feasibility of (y, u, v), we have

−vg(y) � 0.

Since b1 � 0 and a � 0 ⇒ φ1(a) � 0, from the above inequality, we have

− b1(x, y)φ1[vg(y)] � 0. (15)

From (14), (15) and condition (iii), we have

〈α(x, y)∇ f (y), η(x, y)〉 < 0,

and

〈α(x, y)v∇g(y), η(x, y)〉 < 0.

Since u � 0, the above inequalities give

〈α(x, y)(u∇ f (y) + v∇g(y)), η(x, y)〉 < 0.

Since α(x, y) > 0, from the above inequality, we have

〈u∇ f (y) + v∇g(y), η(x, y)〉 < 0,

which contradicts (7) because 〈0, x〉 = 0. This completes the proof. 
�
Theorem 4.4 (Strong duality). Let x̄ be an efficient solution for (P) and x̄ satisfies a con-
straints qualification for (P) in Marusciac [11]. Then there exists ū ∈ R p and v̄ ∈ Rm such
that (x̄, ū, v̄) is feasible for (MWD). If any of the weak duality in Theorems4.1–4.3 also
holds, then (x̄, ū, v̄) is an efficient solution for (MWD).

Proof Since x̄ is efficient for (P) and satisfy the constraints qualification for (P), then from
Kuhn–Tucker necessary optimality condition, we obtain ū > 0 and v̄ � 0 such that

ū∇ f (x̄) + v̄∇g(x̄) = 0, v̄g(x̄) = 0.

The vector ū may be normalized according to ūe = 1, ū > 0, which gives that the triplet
(x̄, ū, v̄) is feasible for (MWD). The efficiency of (x̄, ū, v̄) for (MWD) follows from weak
duality theorem. This completes the proof. 
�
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